第二章
四个热力学函数
$$ \begin{aligned} H =& U + pV\ F =& U - TS\ G =& U - TS + pV \end{aligned} $$
微分形式:
$$U = TdS - pdV$$
$$F = -SdT - pdV$$
$$H = TdS + Vdp$$
$$G = -SdT + Vdp$$
$$H=G-T\frac{\partial G}{\partial T}$$
$$U=F-T\frac{\partial F}{\partial T} =G-T\frac{\partial G}{\partial T}-p\frac{\partial G}{\partial p}$$
麦克斯韦关系
$$ \Big(\frac{\partial T}{\partial V}\Big)_S = -\Big(\frac{\partial p}{\partial S}\Big)_V $$
$$ \Big(\frac{\partial T}{\partial p}\Big)_S = \Big(\frac{\partial V}{\partial S}\Big)_p $$
$$ \Big(\frac{\partial S}{\partial V}\Big)_T = \Big(\frac{\partial p}{\partial T}\Big)_V $$
$$ \Big(\frac{\partial S}{\partial p}\Big)_T = -\Big(\frac{\partial V}{\partial T}\Big)_p $$
一些扩展:
$$ C_v = \Big(\frac{\partial U}{\partial T}\Big)_V = T \Big(\frac{\partial S}{\partial T}\Big)_V $$
$$ C_p = \Big(\frac{\partial U}{\partial T}\Big)_p + p \Big(\frac{\partial V}{\partial T}\Big)_p = \Big(\frac{\partial H}{\partial T}\Big)_p = T \Big(\frac{\partial S}{\partial T}\Big)_p $$
$$ \Big(\frac{\partial U}{\partial V}\Big)_T = T\Big(\frac{\partial p}{\partial T}\Big)_V - p = \frac{T}{p}\beta - p $$
$$ (\frac{\partial H}{\partial p})_T = V - T(\frac{\partial V}{\partial T})_p = V - \frac{T}{V}\alpha $$
节流过程
气体在节流过程中焓不变。
$\mu=\Big(\cfrac{\partial T}{\partial p}\Big)_H = \cfrac{V}{C_p}(T\alpha - 1)=\cfrac{1}{C_p}\Big[T\Big(\cfrac{\partial V}{\partial T}\Big)_p -V\Big]$ 称为焦汤系数。
可以利用节流过程中 $\mu > 0$ 一侧制冷区,利用节流过程使得液体降温而液化。
内能与焓的积分形式
$$ U = \int{C_vdT+[T(\frac{\partial p}{\partial T})_V -p]dV}+U_0 $$
$$ S = \int[\frac{C_v}{T}dT+(\frac{\partial p}{\partial T}dV)]+S_0 $$
热辐射
辐射压强 $p=\cfrac{1}{3}u$,而能态密度 $u=aT^4$。
$S=\cfrac{4}{3}aT^3V$ (可逆绝热下有 $T^3V$ 常数)
辐射通量密度 $J_u=\cfrac{1}{4}CU$
磁介质
$m=MV$ 是介质的总磁矩
所做的功为 $dW =\mu_0Hdm$
磁介质的内能满足 $dU=TdS+\mu_0hdm$
磁介质的吉布斯函数满足 $dG=-SdT-\mu_0mdH$
磁介质的热容 $C_H=T(\cfrac{\partial S}{\partial T})_H$ 则 $(\cfrac{\partial T}{\partial H})_S=-\cfrac{\mu_0T}{C_H}(\cfrac{\partial m}{\partial T})_M$
居里定律: $m=\cfrac{C_V}{T}H$ 可以得出: $(\cfrac{\partial T}{\partial H})_S=\cfrac{C_V}{C_HT}\mu_0H$ 和 $TdS =C_VdT+T\cfrac{\alpha}{\kappa_T}dV$
重要习题
证明 $\cfrac{\kappa_s}{\kappa_T} = \cfrac{C_v}{C_p}$
证明 $C_p - C_V = -T\cfrac{(\cfrac{\partial p}{\partial T})_V^2}{(\cfrac{\partial p}{\partial V})_T}$